Response to Comment on “Probing the Ultimate Limit of Fiber-Optic Strain Sensing”

نویسندگان

  • G. Gagliardi
  • M. Salza
  • S. Avino
  • P. Ferraro
  • P. De Natale
چکیده

Cranch and Foster argue that the strain resolution of our fiber resonator sensor is not limited by thermal noise. However, extension of common theoretical models to high-finesse passive resonators at low frequency needs further attention. Our findings are consistent with noise of thermodynamic nature for which no experimental evidence in the infrasonic range was available until recently. Thermally induced phase fluctuations in optical fibers have long been studied because they set a fundamental limit to strain resolution of sensors as well as frequency stability of fiber lasers (1, 2). In our original paper (3), we reported an unprecedented resolution level in strain sensing using a high-finesse fiber Bragg-grating (FBG) resonator interrogated by an optical-frequency-comb (OFC) stabilized diode laser. The OFC minimizes noise contribution from the laser, which is usually dominant in similar systems, particularly in the infrasonic frequency range (4, 5). Taking into account the laser-frequency noise when locked to the OFC, we estimated the ultimate limit of our technique to be 120 fε/√Hz at 2 Hz (3). Despite that, the strain resolution was found to be above the expected value. Cranch and Foster (6) compare our strain noise with that predicted by their model with an effective fiber length equal to twice the FBGs distance (analogous to fiber lasers) (7). We remark that the definition of effective length given in (7) is difficult to match with the popular Wanser’s model (8). Wanser’s theory provides the only analytical expression of thermal phase fluctuations for finite-cladding fibers. Over the past two decades, few experiments have confirmed this model for long-fiber interferometers—and those have been only in the acoustic range—whereas strong deviations were found at low frequency (9, 10). A similar theory was developed for fiber lasers, but a discrepancy with Wanser’s expression was pointed out, and the measured low-frequency noise was far from the predicted level as well (7). To explain this behavior, a different theoretical model was proposed for fiber lasers, based on the introduction of source terms in the stochastic heat diffusion equation (11). However, the extrapolation of the predictions of these models at low frequencies is still questionable. To our knowledge, no theory or experiment has been reported to date for high-finesse passive fiber resonators, which leaves open the question of which theoretical approach better describes the observed noise. In the absence of other models, we used Wanser’s formula with a finesse-dependent length to account for the power storage inside the cavity due to multiple reflections. Although the use of this scaling factor is arguable, it leads to a factor 8 in the noise calculation compared with the original Wanser’s formulation, and it describes well the observed noise. Finally, we note that the OFC noise-limited strain resolution is about a factor 6 below the Leave a comment (0) Prev | Table of

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comment on "Probing the ultimate limit of fiber-optic strain sensing".

Gagliardi et al. (Reports, 19 November 2010, p. 1081) described an ultrahigh-resolution fiber-optic strain sensor. This comment addresses an error in the calculation of the fundamental thermodynamic noise in optical fiber resonators and shows that the actual thermodynamic noise level is lower by a factor of at least 11 than that calculated.

متن کامل

Probing the ultimate limit of fiber-optic strain sensing.

The measurement of relative displacements and deformations is important in many fields such as structural engineering, aerospace, geophysics, and nanotechnology. Optical-fiber sensors have become key tools for strain measurements, with sensitivity limits ranging between 10(-9) and 10(-6)ε hertz (Hz)(-1/2) (where ε is the fractional length change). We report on strain measurements at the 10(-13)...

متن کامل

Tapered Optical Fiber Coated with ZnO Nanorods for Detection of Ethanol Concentration in Water

This work presents ZnO nanorods coated multimode optical fiber sensing behavior in response to ethanol solution. The sensor operates based on modulation of light intensity which arises from manipulation of light interaction with the ambient environment in sensing region. For this purpose, two steps are experimentally applied here; etching and then coating fiber with ZnO nanorods to provide stro...

متن کامل

Fiber - Optic Sensing of Linear Thermal Expansion (RESEARCH NOTES)

The use of a LED fiber-optic sensor to measure displacement and linear thermal expansion is described. It has a sensitivity of about 0.6 mV/mm, a resolution of 1.25 mm, and a dynamic rang of 400 mm for displacement measurements. For thermal expansion, it shows a sensitivity of about 3.5 mV/C, and the experimental linear expansion values are in agreement with those calculated. The reported senso...

متن کامل

COMPARISON OF DIFFERENT GLASS COMPOUNDS FOR INTRINSIC FIBER OPTIC TEMPERATURE SENSORS

Different glasses suitable for temperature sensing in the fiber optic sensors were studied in this article. The phase changes for eight different glass materials were calculated and results were compared. Our results showed that extra dense flint glass is the most sensitive one, while pure silica results in the lowest phase change. In another study the effect of wavelength on the phase variatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012